skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mukherjee, Sourav"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Flash droughts are abrupt and rapid intensification of droughts that affect agriculture, water, and ecosystems and are commonplace in South Asia. Despite their potential impact, flash drought evolution characteristics and underlying mechanisms in South Asia remain underexplored. We use a multivariate approach to analyze the onset speed, frequency, severity, duration, and return period of flash droughts, and the role of atmospheric circulation and human-induced climate change. We find that flash droughts are more common and intense in the crop season, especially in central India, western Pakistan, and eastern Afghanistan. They are caused by persistent atmospheric patterns that block moisture transport to South Asia. Additionally, anthropogenic climate change has intensified flash droughts in the spring-summer season, with a median fraction of attributable risk of 60%, 80%, and 90% for Afghanistan, Pakistan, and India, respectively. Our results suggest that flash droughts will expand and worsen in the future, requiring adaptation measures for the water, agriculture, and energy sectors. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract Climate change amplifies dry and hot extremes, yet the mechanism, extent, scope, and temporal scale of causal linkages between dry and hot extremes remain underexplored. Here using the concept of system dynamics, we investigate cross-scale interactions within dry-to-hot and hot-to-dry extreme event networks and quantify the magnitude, temporal-scale, and physical drivers of cascading effects (CEs) of drying-on-heating and vice-versa, across the globe. We find that locations exhibiting exceptionally strong CE (hotspots) for dry-to-hot and hot-to-dry extremes generally coincide. However, the CEs differ strongly in their timescale of interaction, hydroclimatic drivers, and sensitivity to changes in the soil-plant-atmosphere continuum and background aridity. The CE of drying-on-heating in the hotspot locations reaches its peak immediately driven by the compounding influence of vapor pressure deficit, potential evapotranspiration, and precipitation. In contrast, the CE of heating-on-drying peaks gradually dominated by concurrent changes in potential evapotranspiration, precipitation, and net-radiation with the effect of vapor pressure deficit being strongly controlled by ecosystem isohydricity and background aridity. Our results help improve our understanding of the causal linkages and the predictability of compound extremes and related impacts. 
    more » « less
  3. Flood peak magnitudes and frequency estimates are key components of any effective nationwide flood risk management and flood damage abatement program. In this study, we evaluated normalized peak design discharges (Qp) for 1,387 hydrologic unit code 16 to 20 (HUC16-20) watersheds in the White Mountain National Forest (WMNF), New Hampshire and in five Experimental Forest (EF) regions across the United States managed by USDA Forest Service (USDA-FS). Nonstationary regional frequency analysis (RFA) and single site frequency analysis (FA) with long-term high-resolution observed streamflow data along with the deterministic Rational Method (RM) and semi-empirical United States Geological Survey regional regression equation (USGS-RRE) were used. Additionally, a hydrologic vulnerability assessment was performed for 194 road culverts as a result of extreme precipitation-induced flooding on gauged and ungauged watersheds in the Hubbard Brook EF (HBR) within the WMNF. The RM outperformed the USGS-RRE in predicting Qp in the gauged and ungauged HUC16-20 watersheds of WMNF and in three other small, high-relief forest headwater watersheds—Coweeta Hydrologic Lab EF’s watershed-14, and watershed-27 in North Carolina and HJ Andrews EF’s watershed 8 in Oregon. However, the USGS-RRE performed better for larger watersheds, such as the Fraser EF’s St. Louis watershed in Colorado and the Santee EF’s watershed 80 in South Carolina. About 31 %, 26 %, and 56 % of the culverts at the HBR site could not accommodate the 100-yr Qp estimated by RFA, RM and USGS-RRE, respectively. Based on the chosen RIs and techniques, it is determined that except for one culvert with diameter = 0.91 m (36 in.), none of the culverts with diameter of 0.75 m (30 in.) or larger are hydrologically vulnerable. Our results suggest that the observation based RFA works best where multiple gauges are available to extrapolate information for ungauged watersheds, otherwise, RM is best-suited for smaller headwater watersheds and USGS-RRE for larger watersheds. Results from the hydrologic vulnerability analysis revealed that replacing undersized culverts with new culverts of diameter ≥ 0.75-m will improve flood resiliency, provided that the structure is geomorphologically safe (with minimal effects of debris flow, erosion, and sedimentation) and allows for both bank-full discharge and necessary fish passage within that design limit. This study has implications in managing road culverts and crossings at Forest Service and other forested lands for their resiliency to extreme precipitation and flooding hazards induced by climate change. 
    more » « less
  4. Compound drought and heatwave (CDHW) events have garnered increased attention due to their significant impacts on agriculture, energy, water resources, and ecosystems. We quantify the projected future shifts in CDHW characteristics (such as frequency, duration, and severity) due to continued anthropogenic warming relative to the baseline recent observed period (1982 to 2019). We combine weekly drought and heatwave information for 26 climate divisions across the globe, employing historical and projected model output from eight Coupled Model Intercomparison Project 6 GCMs and three Shared Socioeconomic Pathways. Statistically significant trends are revealed in the CDHW characteristics for both recent observed and model simulated future period (2020 to 2099). East Africa, North Australia, East North America, Central Asia, Central Europe, and Southeastern South America show the greatest increase in frequency through the late 21st century. The Southern Hemisphere displays a greater projected increase in CDHW occurrence, while the Northern Hemisphere displays a greater increase in CDHW severity. Regional warmings play a significant role in CDHW changes in most regions. These findings have implications for minimizing the impacts of extreme events and developing adaptation and mitigation policies to cope with increased risk on water, energy, and food sectors in critical geographical regions. 
    more » « less
  5. Abstract Urgency of Precipitation Intensity-Duration-Frequency (IDF) estimation using the most recent data has grown significantly due to recent intense precipitation and cloud burst circumstances impacting infrastructure caused by climate change. Given the continually available digitized up-to-date, long-term, and fine resolution precipitation dataset from the United States Department of Agriculture Forest Service’s (USDAFS) Experimental Forests and Ranges (EF) rain gauge stations, it is both important and relevant to develop precipitation IDF from onsite dataset (Onsite-IDF) that incorporates the most recent time period, aiding in the design, and planning of forest road-stream crossing structures (RSCS) in headwaters to maintain resilient forest ecosystems. Here we developed Onsite-IDFs for hourly and sub-hourly duration, and 25-yr, 50-yr, and 100-yr design return intervals (RIs) from annual maxima series (AMS) of precipitation intensities (PIs) modeled by applying Generalized Extreme Value (GEV) analysis and L-moment based parameter estimation methodology at six USDAFS EFs and compared them with precipitation IDFs obtained from the National Oceanic and Atmospheric Administration Atlas 14 (NOAA-Atlas14). A regional frequency analysis (RFA) was performed for EFs where data from multiple precipitation gauges are available. NOAA’s station-based precipitation IDFs were estimated for comparison using RFA (NOAA-RFA) at one of the EFs where NOAA-Atlas14 precipitation IDFs are unavailable. Onsite-IDFs were then evaluated against the PIs from NOAA-Atlas14 and NOAA-RFA by comparing their relative differences and storm frequencies. Results show considerable relative differences between the Onsite- and NOAA-Atlas14 (or NOAA-RFA) IDFs at these EFs, some of which are strongly dependent on the storm durations and elevation of precipitation gauges, particularly in steep, forested sites of H. J. Andrews (HJA) and Coweeta Hydrological Laboratory (CHL) EFs. At the higher elevation gauge of HJA EF, NOAA-RFA based precipitation IDFs underestimate PI of 25-yr, 50-yr, and 100-yr RIs by considerable amounts for 12-h and 24-h duration storm events relative to the Onsite-IDFs. At the low-gradient Santee (SAN) EF, the PIs of 3- to 24-h storm events with 100-yr frequency (or RI) from NOAA-Atlas14 gauges are found to be equivalent to PIs of more frequent storm events (25–50-yr RI) as estimated from the onsite dataset. Our results recommend use of the Onsite-IDF estimates for the estimation of design storm peak discharge rates at the higher elevation catchments of HJA, CHL, and SAN EF locations, particularly for longer duration events, where NOAA-based precipitation IDFs underestimate the PIs relative to the Onsite-IDFs. This underscores the importance of long-term high resolution EF data for new applications including ecological restorations and indicates that planning and design teams should use as much local data as possible or account for potential PI inconsistencies or underestimations if local data are unavailable. 
    more » « less
  6. Abstract Flash Drought (FD) has garnered much attention in recent years, with significant advancements in the indicators applied for identifying these rapidly intensifying events. However, the difference in existing FD definitions and methodologies among research communities and the choice of different data sources underscores the importance of addressing the uncertainties associated with the global FD characteristics and their drivers. This study compares two key FD indicators derived based on evaporative stress ratio (ESR) and root‐zone soil‐moisture (RZSM) using three different data sources to investigate the uncertainties in global FD frequency and intensity (speed), and the influencing drivers. The results suggest that such disparities are significant in the two FD indicators across different climate regions of the globe. The results highlight varying spatial drivers of FD frequency, intensity, and their evolution, potentially linked to background aridity. Changes in precipitation, temperature, vapor pressure deficit, and soil‐temperature coupling play an important role with a cascading (concurrent) impact on the evolution of FD based on RZSM (ESR). The relationship between ESR and RZSM fails to explain most of the variance in each of these indicators specific to the FD episodes, especially in the transitional and humid climate regimes. Overall, the results highlight the necessity of more nuanced methodologies for deriving FD indicators that can efficiently couple the rapid soil‐moisture depletion rates in deeper layers with changes in atmospheric evaporative demand which has direct implications on vegetation health. 
    more » « less
  7. Abstract The significant impact of flash droughts (FDs) on society can vary based on a combination of FD characteristics (event counts, mean severity, and rate of intensification), which is largely unexplored. We employed root‐zone soil‐moisture for 1980–2018 to calculate the FD characteristics and integrated them to formulate a novel multivariate FD indicator for mapping the global FD hotspot regions. The potential influence of climate characteristics (i.e., anomalies, aridity, and evaporative fractions) and land‐climate feedbacks on the evolution of multivariate FD indicator is investigated. Our results indicate that precipitation is the primary driver of FD evolution, while the effect of temperature, vapor pressure deficit, and land‐climate interaction varies across the climate divisions after the onset of the events. The magnitude of multivariate FD indicator decreases with increased climate aridity, and it is significant in the global humid regimes, underscoring the importance of water and energy supply as limiting factors regulating FD‐risk. 
    more » « less
  8. Abstract Compound drought and heatwaves can cause significant damage to the environment, economy, and society. In this study, we quantify the spatio‐temporal changes in compound drought and heatwave (CDHW) events by integrating weekly self‐calibrated Palmer Drought Severity Index (sc_PDSI) and daily maximum temperatures during the period 1983 to 2016. Multiple data products are used to examine the robustness of sc_PDSI in the compound event analysis. The results consistently suggest significant increases in drought‐related heatwaves and affected global land area in recent (warmer) periods. Several regions across the globe witnessed rise in CDHW frequency (one to three events/year), duration (2–10 days/year), and severity. This increasing pattern is spatially asymmetric, and greater amplification is observed across the Northern hemisphere due to recent warming. Furthermore, the background aridity influences the spatiotemporal evolution of CDHW events. The results can be applied to minimize the impacts of extreme CDHWs in critical geographical regions. 
    more » « less